1.1 Scope

This short notice provides information about the GPS interface for wireless synchronization located inside dual color or white only medium intensity OFI360 obstruction lights

1.2 General Description

The GPS is a PCB provided with a bracket fixed inside the flashhead and an external magnet antenna fixed on the base of the flashhead:

1.2 Electrical signals

It is powered in 48VDC and provides output signal(s) to the command card for the flash synchronisation (and in option the change of color and/or luminous intensity during day/night switch using either the GPS clock or a photocensor connected on it)

1.2.1 Input signal(s):

- 48Vdc power supply

- day/night signal coming from the 48Vc photocell (in case the flash rate need to be changed between day and night) or coming from a photocensor (this interface can also use the GPS clock to monitor the day/night switch)

1.2.2 Output signal(s):

- top sync

- if used, day/night signal : 0V->day mode, 48Vdc->night mode

1.3 Operation

- the green led (GPS) blinks: the GPS receives the signal

the red led (D) and the green led (S) blink: the GPS is not synchronized and sends a top sync to the command card at 15 flashes per minute, if used day/night signal remains at "night time"
the green led (S) blinks: The GPS is synchronized in day mode and sends a top sync to the command card as per S3 configuration (20 fl per minute in the photo)

- the green led (S) blinks and the leds (N) & (T) are on: the GPS is synchronized in night mode and sends a top sync to the command card as per S4 (20 fl per minute in the photo)

S3 and S4 coding:

0010 -> 20 flashes per minute 0011 -> 30 flashes per minute 0100 -> 40 flashes per minute 0101 -> 50 flashes per minute 0110 -> 60 flashes per minute For 3 levels configuration with 0/13, 2/13 @ 10/13 Sync config is set up by level: 00 for mid level (0s of UTC clock) 01 for top level 10 for bottom level